赢咖3「专业游戏注册平台」
ENGLISH
|
集团首页
集团主页
关于我们
赢咖3简介
现任领导
组织机构
联系方式
团队队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
公司产品
公司产品动态
研究生专业方向
公司产品方案
党建园地
党建动态
数公司党校
员工工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
员工动态
员工动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
集团主页
>
科学研究
>
学术报告
> 正文
Continuous Time Hidden Markov Model for Longitudinal Data
发布时间:2018-03-16 来源:赢咖3 浏览次数:
Speaker:
周洁
DateTime:
2018年3月17日(周六)下午3:30-4:30
Brief Introduction to Speaker:
周洁
,首都师范大学
。
Place:
六号楼二楼报告厅
Abstract:
Hidden Markov models (HMMs) describe the relationship between two stochastic processes, namely, an observed outcome process and an unobservable finite-state transition process. Given their ability to model dynamic heterogeneity, HMMs are extensively used to analyze heterogeneous longitudinal data. A majority of early developments in HMMs assume that observation times are discrete and regular. This assumption is often unrealistic in substantive research settings where subjects are intermittently seen and the observation times are continuous or not predetermined. However, available works in this direction are few and restricted only to certain special cases. In this article, we consider a general continuous-time HMM with an unknown number of hidden states. The proposed model is highly flexible, thereby enabling it to accommodate different types of longitudinal data that are regularly, irregularly, or continuously collected.
上一条:
Finite W super algebra via super Poisson geometry
下一条:
Interaction Estimation for Ultrahigh Dimensional Regression